

MBS-003-1104001

Seat No. _____

M. Sc. (Sem. IV) (CBCS) Examination

April / May- 2018

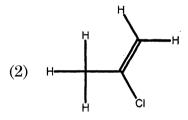
C-401: Chemistry

(Advance Spectroscopic Technique) (New Course) (All Branches)

> Faculty Code: 003 Subject Code: 1104001

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70


Instructions: (1) All questions carry equal marks.

(2) All questions are compulsory.

1 Answer the following: (any seven)

14

(a) Determine equivalent and non equivalent hydrogen atoms in the following compounds:

(b) How many different types of protons are there in following compounds?

(1)
$$H_3C$$

- (c) Write the frequency range for Near Infrared spectroscopy.
- (d) Write the limitation of ESR.
- (e) Write the full form of HMQC, NOESY, TOCSY and DEPT.
- (f) Predict the ¹³CNMR signals for the following compounds:

(1)
$$H_3C$$
 CH_3

- (g) What is chemical ionization? Explain primary ions, secondary ions and proton donation.
- (h) Write the principal of Raman spectroscopy.
- (i) Discuss types of UV absorption Shifts.
- (j) An organic compound X is composed of carbon, hydrogen and nitrogen with carbon constituting over 60% of the mass. It shows a molecular ion at m/z=112 amu in mass spectrum. Write a possible molecular formula and show many ring plus double bond in it?
- 2 Answer the followings: (Any two)

14

[Contd...

- (a) What are mass analyzers? Explain TOF with diagram and discuss its merits and demerits.
- (b) Explain hyper fine splitting in ESR.
- (c) Compare the components of Middle and NIR instruments.

3 Answer the following:

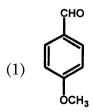
- (a) Draw the hypothetical ¹HNMR spectrum of 2,2, dimethylbutane and assign the multiplicity of each signals.
- (b) Give a brief account on different ²DNMR techniques.

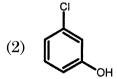
OR

- 3 (a) Sketch the ¹HNMR of 3,4-dimethylpentane -2-one and assign the multiplicity of each signals.
 - (b) Explain COSY² DNMR techniques with suitable example.

4 Answer the following: (any three)

14


14


- (a) Discuss the UV absorption due to carbonyl compounds in details.
- (b) Discuss classical and quantum mechanical theory of Raman effects.
- (c) Draw the ¹HNMR of AA'BB' system with suitable example and explain it briefly.
- (d) Discuss the application of Near Infrared Spectroscopy.

5 Answer the following: (any three)

14

(a) Calculate the ¹³C chemical shift for the following Compounds:

- (b) Answer the followings:
 - (i) Define: Molecular ion peak and isotopic peak.
 - (ii) Derive the structural formula for the compound ${\rm C_6H_8O_3}$ from mass spectral data :

%	22	20	33	82	18	100(B.P.)	34	45	4.1	0.4
m/e	63	64	65	92	93	120	121	152	153	154

- (c) Write a note on types of electronic transitions in UV spectroscopy.
- (d) Explain DEPT- 135 ¹³CMR of Following compounds:

(1)
$$H_3C$$
 CH_3